Copied to
clipboard

G = C42.3Dic3order 192 = 26·3

3rd non-split extension by C42 of Dic3 acting via Dic3/C3=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.3Dic3, C4⋊Q8.3S3, (C4×C12).3C4, (C2×C12).6D4, (C6×Q8).3C4, (C2×Q8).28D6, (C2×Q8).6Dic3, (C6×Q8).4C22, C6.26(C23⋊C4), C32(C42.3C4), C12.10D4.2C2, C2.11(C23.7D6), C22.17(C6.D4), (C3×C4⋊Q8).3C2, (C2×C12).11(C2×C4), (C2×C4).8(C3⋊D4), (C2×C4).4(C2×Dic3), (C2×C6).106(C22⋊C4), SmallGroup(192,107)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C42.3Dic3
C1C3C6C2×C6C2×C12C6×Q8C12.10D4 — C42.3Dic3
C3C6C2×C6C2×C12 — C42.3Dic3
C1C2C22C2×Q8C4⋊Q8

Generators and relations for C42.3Dic3
 G = < a,b,c,d | a4=b4=1, c6=b2, d2=b2c3, ab=ba, cac-1=a-1, dad-1=a-1b, cbc-1=b-1, dbd-1=a2b, dcd-1=c5 >

Subgroups: 144 in 60 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C3, C4, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, Q8, C12, C2×C6, C42, C4⋊C4, M4(2), C2×Q8, C3⋊C8, C2×C12, C2×C12, C2×C12, C3×Q8, C4.10D4, C4⋊Q8, C4.Dic3, C4×C12, C3×C4⋊C4, C6×Q8, C42.3C4, C12.10D4, C3×C4⋊Q8, C42.3Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C2×Dic3, C3⋊D4, C23⋊C4, C6.D4, C42.3C4, C23.7D6, C42.3Dic3

Character table of C42.3Dic3

 class 12A2B34A4B4C4D4E4F6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H12I12J
 size 1122444448222242424244444448888
ρ1111111111111111111111111111    trivial
ρ21111111111111-1-1-1-11111111111    linear of order 2
ρ31111-111-11-1111-11-111-1-11-1-111-1-1    linear of order 2
ρ41111-111-11-11111-11-11-1-11-1-111-1-1    linear of order 2
ρ511111-1-111-1111-iii-i111111-1-1-1-1    linear of order 4
ρ611111-1-111-1111i-i-ii111111-1-1-1-1    linear of order 4
ρ71111-1-1-1-111111ii-i-i1-1-11-1-1-1-111    linear of order 4
ρ81111-1-1-1-111111-i-iii1-1-11-1-1-1-111    linear of order 4
ρ9222202-20-202220000-200-2002-200    orthogonal lifted from D4
ρ10222-1-222-22-2-1-1-10000-111-111-1-111    orthogonal lifted from D6
ρ1122220-220-202220000-200-200-2200    orthogonal lifted from D4
ρ12222-1222222-1-1-10000-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ13222-1-2-2-2-222-1-1-10000-111-11111-1-1    symplectic lifted from Dic3, Schur index 2
ρ14222-12-2-222-2-1-1-10000-1-1-1-1-1-11111    symplectic lifted from Dic3, Schur index 2
ρ15222-102-20-20-1-1-100001--3-31--3-3-11--3-3    complex lifted from C3⋊D4
ρ16222-102-20-20-1-1-100001-3--31-3--3-11-3--3    complex lifted from C3⋊D4
ρ17222-10-220-20-1-1-100001--3-31--3-31-1-3--3    complex lifted from C3⋊D4
ρ18222-10-220-20-1-1-100001-3--31-3--31-1--3-3    complex lifted from C3⋊D4
ρ1944-44000000-44-400000000000000    orthogonal lifted from C23⋊C4
ρ204-404-2002000-4000000220-2-20000    symplectic lifted from C42.3C4, Schur index 2
ρ214-404200-2000-4000000-2-20220000    symplectic lifted from C42.3C4, Schur index 2
ρ224-40-2200-200-2-322-3000001--31+-30-1+-3-1--30000    complex faithful
ρ234-40-2200-2002-32-2-3000001+-31--30-1--3-1+-30000    complex faithful
ρ2444-4-20000002-220000-2-3002-3000000    complex lifted from C23.7D6
ρ254-40-2-2002002-32-2-300000-1--3-1+-301+-31--30000    complex faithful
ρ264-40-2-200200-2-322-300000-1+-3-1--301--31+-30000    complex faithful
ρ2744-4-20000002-2200002-300-2-3000000    complex lifted from C23.7D6

Smallest permutation representation of C42.3Dic3
On 48 points
Generators in S48
(13 28 19 34)(14 35 20 29)(15 30 21 36)(16 25 22 31)(17 32 23 26)(18 27 24 33)
(1 39 7 45)(2 46 8 40)(3 41 9 47)(4 48 10 42)(5 43 11 37)(6 38 12 44)(13 28 19 34)(14 35 20 29)(15 30 21 36)(16 25 22 31)(17 32 23 26)(18 27 24 33)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 28 10 25 7 34 4 31)(2 33 11 30 8 27 5 36)(3 26 12 35 9 32 6 29)(13 42 22 39 19 48 16 45)(14 47 23 44 20 41 17 38)(15 40 24 37 21 46 18 43)

G:=sub<Sym(48)| (13,28,19,34)(14,35,20,29)(15,30,21,36)(16,25,22,31)(17,32,23,26)(18,27,24,33), (1,39,7,45)(2,46,8,40)(3,41,9,47)(4,48,10,42)(5,43,11,37)(6,38,12,44)(13,28,19,34)(14,35,20,29)(15,30,21,36)(16,25,22,31)(17,32,23,26)(18,27,24,33), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,10,25,7,34,4,31)(2,33,11,30,8,27,5,36)(3,26,12,35,9,32,6,29)(13,42,22,39,19,48,16,45)(14,47,23,44,20,41,17,38)(15,40,24,37,21,46,18,43)>;

G:=Group( (13,28,19,34)(14,35,20,29)(15,30,21,36)(16,25,22,31)(17,32,23,26)(18,27,24,33), (1,39,7,45)(2,46,8,40)(3,41,9,47)(4,48,10,42)(5,43,11,37)(6,38,12,44)(13,28,19,34)(14,35,20,29)(15,30,21,36)(16,25,22,31)(17,32,23,26)(18,27,24,33), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,10,25,7,34,4,31)(2,33,11,30,8,27,5,36)(3,26,12,35,9,32,6,29)(13,42,22,39,19,48,16,45)(14,47,23,44,20,41,17,38)(15,40,24,37,21,46,18,43) );

G=PermutationGroup([[(13,28,19,34),(14,35,20,29),(15,30,21,36),(16,25,22,31),(17,32,23,26),(18,27,24,33)], [(1,39,7,45),(2,46,8,40),(3,41,9,47),(4,48,10,42),(5,43,11,37),(6,38,12,44),(13,28,19,34),(14,35,20,29),(15,30,21,36),(16,25,22,31),(17,32,23,26),(18,27,24,33)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,28,10,25,7,34,4,31),(2,33,11,30,8,27,5,36),(3,26,12,35,9,32,6,29),(13,42,22,39,19,48,16,45),(14,47,23,44,20,41,17,38),(15,40,24,37,21,46,18,43)]])

Matrix representation of C42.3Dic3 in GL4(𝔽7) generated by

6060
3231
1155
0006
,
3500
5400
6622
5215
,
1362
2520
4456
4353
,
0362
5065
6144
2213
G:=sub<GL(4,GF(7))| [6,3,1,0,0,2,1,0,6,3,5,0,0,1,5,6],[3,5,6,5,5,4,6,2,0,0,2,1,0,0,2,5],[1,2,4,4,3,5,4,3,6,2,5,5,2,0,6,3],[0,5,6,2,3,0,1,2,6,6,4,1,2,5,4,3] >;

C42.3Dic3 in GAP, Magma, Sage, TeX

C_4^2._3{\rm Dic}_3
% in TeX

G:=Group("C4^2.3Dic3");
// GroupNames label

G:=SmallGroup(192,107);
// by ID

G=gap.SmallGroup(192,107);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,232,219,184,1571,570,297,136,1684,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^2,d^2=b^2*c^3,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of C42.3Dic3 in TeX

׿
×
𝔽